6 research outputs found

    DAGS:Key encapsulation using dyadic GS codes

    Get PDF
    Code-based cryptography is one of the main areas of interest for NIST's Post-Quantum Cryptography Standardization call. In this paper, we introduce DAGS, a Key Encapsulation Mechanism (KEM) based on quasi-dyadic generalized Srivastava codes. The scheme is proved to be IND-CCA secure in both random oracle model and quantum random oracle model. We believe that DAGS will offer competitive performance, especially when compared with other existing code-based schemes, and represent a valid candidate for post-quantum standardization.</p

    DAGS: Key encapsulation using dyadic GS codes

    No full text
    Code-based Cryptography is one of the main areas of interest for the Post-Quantum Cryptography Standardization call. In this paper, we introduce DAGS, a Key Encapsulation Mechanism (KEM) based on Quasi-Dyadic Generalized Srivastava codes. The scheme is proved to be IND-CCA secure in both Random Oracle Model and Quantum Random Oracle Model. We believe that DAGS will offer competitive performance, especially when compared with other existing code-based schemes, and represent a valid candidate for post-quantum standardizatio

    DAGS: Reloaded Revisiting Dyadic Key Encapsulation

    Get PDF
    In this paper we revisit some of the main aspects of the DAGS Key Encapsulation Mechanism, one of the code-based candidates to NIST’s standardization call for the key exchange/encryption functionalities. In particular, we modify the algorithms for key generation, encapsulation and decapsulation to fit an alternative KEM framework, and we present a new set of parameters that use binary codes. We discuss advantages and disadvantages for each of the variants proposed
    corecore